Modeling and numerical simulation of the nonlinear dynamics of the parametrically forced string pendulum
نویسندگان
چکیده
The string pendulum consists of a mass attached to the end of an inextensible string which is fastened to a support. Applying an external forcing to the pendulum’s support is motivated by understanding the behavior of suspension bridges or of tethered structures during earthquakes. The forced string pendulum can go from taut to slack states and vice versa, and is capable of exhibiting interesting periodic and chaotic dynamics. The inextensibility of the string and its capacity to go slack make simulation and analysis of the system complicated. The string pendulum system is thus formulated here as a piecewise-smooth dynamical system using the method of Lagrange multipliers to obtain a system of differential algebraic equations (DAE) for the taut state. In order to develop a formulation for the forced string pendulum system, we first turn to similar but simpler pendulum systems, such as the classic rigid pendulum, the elastic spring pendulum and the elastic spring pendulum with piecewise constant stiffness. We perform a perturbation analysis for both the unforced and forced cases of the spring pendulum approximation, which shows that, for large stiffness, this is a reasonable model of the system. We also show that the spring pendulum with piecewise constant stiffness can be a good approximation of the string pendulum, in the limit of a large extension constant and a low compression constant. We indicate the behavior and stability of this simplified model by using numerical computations of the system’s Lyapunov exponents. We then provide a comparison of the spring pendulum with piecewise constant stiffness with the formulation of the taut-slack pendulum using the DAE for the taut states and derived switching conditions to the slack state.
منابع مشابه
Dynamics and Regulation of Locomotion of a Human Swing Leg as a Double-Pendulum Considering Self-Impact Joint Constraint
Background:Despite some successful dynamic simulation of self-impact double pendulum (SIDP)-as humanoid robots legs or arms- studies, there is limited information available about the control of one leg locomotion.Objective :The main goal of this research is to improve the reliability of the mammalians leg locomotion and building more elaborated models close to the natural movements, by modelin...
متن کاملNonlinear Dynamics of the Rotational Slender Axially Moving String with Simply Supported Conditions
In this research, dynamic analysis of the rotational slender axially moving string is investigated. String assumed as Euler Bernoulli beam. The axial motion of the string, gyroscopic force and mass eccentricity were considered in the study. Equations of motion are derived using Hamilton’s principle, resulting in two partial differential equations for the transverse motions. The equations are ch...
متن کاملUsing the Adaptive Frequency Nonlinear Oscillator for Earning an Energy Efficient Motion Pattern in a Leg- Like Stretchable Pendulum by Exploiting the Resonant Mode
In this paper we investigate a biological framework to generate and adapt a motion pattern so that can be energy efficient. In fact, the motion pattern in legged animals and human emerges among interaction between a central pattern generator neural network called CPG and the musculoskeletal system. Here, we model this neuro - musculoskeletal system by means of a leg - like mechanical system cal...
متن کاملNumerical Simulation and Parametric Study of Forced Convective Condensation in Vertical Channel
Forced convective condensation in vertical channel is investigated numerically. The condensation boundary layers that occur due to temperature difference between the walls and saturation temperature of steam is simulated by the volume of fluid (VOF) method. The effect of variations in the hydraulic diameter, steam velocity, Re number and temperature difference between the wall and saturation te...
متن کاملVertical Dynamics Modeling and Simulation of a Six-Wheel Unmanned Ground Vehicle
Vertical dynamics modeling and simulation of a six-wheel unmanned military vehicle (MULE) studied in this paper. The Common Mobility Platform (CMP) chassis provided mobility, built around an advanced propulsion and articulated suspension system gave the vehicle ability to negotiate complex terrain, obstacles, and gaps that a dismounted squad would encounter. Aiming at modeling of vehicle vertic...
متن کامل